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Abstract—Recent advancements in locomotion control have
significantly improved the agility and stability of robots.
Among these developments, Reinforcement Learning (RL) has
emerged as a promising approach, enabling robots—particularly
quadruped robots—to tackle remarkably challenging tasks, such
as parkour and navigating complex, unstructured terrains. How-
ever, RL-based controllers often exhibit challenges, such as gen-
erating asymmetric or unpredictable gaits. Additionally, current
RL policies frequently adopt a one-size-fits-all approach for all
terrains, resulting in excessive noise and unnatural movements
on structured and flat surfaces. In this project, we propose a
training pipeline to achieve stable and refined walking patterns in
quadruped robots. We define elegance as replicating the walking
patterns of animals, characterized by long, low strides and
consistent body height. Our approach involves refining training
environment parameters and terrain design to promote natural,
symmetric gaits across terrain. Furthermore, we explore using a
depth camera to enhance the robot’s ability to climb stairs and
navigate rough terrains. The supplementary videos are available
at dmtrungl4.github.io/cs690k—robot-dog—catwalk

Index Terms—Reinforcement Learning, Quadruped Robots,
Locomotion Control, Unitree Gol

I. INTRODUCTION
A. Motivation

Locomotion control has been a long-standing challenge in
robotics. Planning the motion of end-effectors along a prede-
fined trajectory often involves solving complex, high-degree
inverse kinematics equations, which typically admit infinitely
many solutions. As a result, motion planning is generally
approached using one of two methods: optimization-based
controllers or learning-based controllers. Optimization tech-
niques, such as the Newton-Raphson method or gradient de-
scent, reformulate the problem into computationally tractable
linear or quadratic programming problems, enabling high-
frequency solutions. However, these methods lack exterocep-
tive data, limiting their ability to navigate challenging obstacle
courses or perform teleoperation tasks in extreme conditions.
Incorporating sensor data into optimization-based controllers
could expand the observation space, but this often exceeds
the computational capabilities of onboard devices, which are
frequently as compact as a Raspberry Pi. In contrast, RL-based
controllers offer a lower computational burden, as data only
need to pass through the neural network once. This character-
istic allows seamless integration of sensory inputs, facilitating
locomotion in diverse environments. Despite these advantages,
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RL-based controllers often require extensive reward shaping
and struggle to generalize across terrains. For instance, a robot
trained to climb stairs may lift its feet excessively on flat
terrain, resulting in an unnatural gait, whereas one optimized
for smooth walking on flat ground may fail to clear obstacles
like stairs. Without sufficient reward shaping, robots may also
converge to unexpected behaviors, such as pronking on flat
surfaces. This raises a natural question: Can we develop an
RL policy that achieves both agility and elegance with minimal
reward shaping?

B. Related Works

1) Optimization-based controllers: Recent advancements in
MPC and optimization techniques have enhanced model-based
controllers, enabling them to support a broader range of gaits
[1]], [2] and perform challenging maneuvers such as jumping
and backflipping [3], [4]. However, these models remain
incapable of navigating uneven terrains without exteroceptive
data. Frankhauser et al. [5]] propose an efficient framework
for generating point cloud and elevation maps using depth
cameras, but it relies on accurate knowledge of the robot’s
current body pose, typically obtained through contact sensors.
This requirement creates challenges for lower-cost quadrupeds.

2) RL-based controllers: Extensive prior research has es-
tablished robust frameworks for quadruped robot locomotion
[6], [[7]. Nevertheless, early reinforcement learning policies
struggled in more complex environments, often failing due
to obstacles or losing traction. Recent studies [8], [9] have
achieved significant progress in motion agility, enabling robots
to navigate challenging terrains such as stepping stones or
perform advanced locomotion tasks like landing on inclined
platforms. However, these policies are optimized for extreme
objectives, often resulting in noisy, forceful steps even on
flat surfaces. Siekmann et al. [10] utilize the Von Mises
distribution to define a trajectory for the robot, reinforcing
it through a smoothness reward during training. Although this
method enables quick convergence to effective walking gaits
on flat terrain, it restricts exploration in more challenging
terrains, ultimately making it unsuitable for navigating more
demanding tasks.

In this project, we leverage terrain shaping as an alternative
to reward shaping. Instead of directly rewarding or penalizing
actions, terrain shaping introduces sparse, intermittent obsta-
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Fig. 1. Architecture of the proposed reinforcement learning framework for quadruped locomotion. Privileged and proprioceptive observations are processed
through an actor-critic network. Proprioceptive data is further refined using MLP, CNN, and GRU modules, and actions are executed via a PD controller

guided by policy gradient updates.

cles to enforce desirable behaviors, such as appropriate gait
and foot height, without explicit reward functions. This method
reduces the risk of overfitting to specific terrains, fostering
robust and generalizable policies. Additionally, we design the
training environment in IsaacLab [[11] to promote symmetry
in robot observations and employ empirical normalization
techniques to incentivize symmetrical policies. Experimental
evaluations on both simulated and real robots demonstrate
marked improvements in locomotion quietness, robustness,
and symmetry compared to existing methods.

II. METHOD

We use IsaacLab as our training environment. This allows
us to circumvent the two-stage training paradigm prevalent
in prior learning-based policies with camera integration. The
depth image is preprocessed through a combination of con-
volutional and fully connected layers down to a (32,) latent
vector and concatenated with proprioception data to form
an end-to-end training pipeline. In this section, we provide
a detailed overview of the neural network and other design
choices.

A. Overview

We leverage the framework from [12], which consists of an
actor, critic, and estimator that takes both proprioceptive and
exteroceptive data from the depth image to predict the pose
of the robot d; and the elevation map m;. The proprioceptive
observation o, is a 48-dimensional vector directly measured
from joint encoders and the IMU, such that:
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where vy, w; are the linear and angular velocities, g; is the
gravitational vector of the body frame, ¢; is the command,
0,0, and a;_1 are joint position, joint velocity, and previous

TABLE I
REWARD FUNCTION ELEMENTS

Reward Equation (r;) Weight (w;)
Lin. velocity tracking exp{—4(v§z‘”d — vgy)?} 4.5
Ang. velocity tracking exp{—4(w§2”j — wyaw)?} 1.5
Linear velocity (z) ng -0.5
Angular velocity (xy) wgi’ -0.05
Orientation % -1.0
Joint accelerations 62 —2.5x 1077
Joint power |16 —2x 1075
Collision —Necollision -10.0
Action rate (at — az—1)> -0.01
Smoothness (at — 2a¢—1 + ar—2)? -0.01
Base Height (hy — 31)2 -1.0

action. The action space is a 12-dimensional vector corre-
sponding to the 12 joints of the quadruped robot. If the depth
image module is used, a latent vector of dimension (32, ) will
be appended, raising the total dimension of the observation to
(80, ). For the value network, or the critics’ observation, an
elevation map m; of dimension 187 is included, raising the
total size of s; to (235, ).

ofepth = [ot d]T St = [ot mt]T 2)

B. Training details

1) Simulation Platform: We set up 3000 parallel environ-
ments on L40S GPU and leveraged IsaacLab to train 10,000
iterations in approximately 20 hours. Nonetheless, empirical
evidence shows that our model consistently converges after
between 5,000 and 7,000 iterations.

2) Reward Function: The reward functions and parameters
are specified in Table |l For the blind policy, we adopted
the weights from [6], [7]], [12]. However, this will lead to



extremely negative rewards in vision-based policy due to the
increased complexity of the observation space. Therefore, to
promote actions rather than early termination, we incremented
linear velocity and angular velocity rewards threefold. To
maintain consistent body height, we constrained base height
to 3lcm. We avoid using other reward functions as in [§] to
emphasize the robustness of our design.

3) Design of Environment: The scene is arranged in a m xn
grid, depending on the number of terrains and the granularity
of levels specified. On the z—basis, the terrain varies by type,
on the y—basis, the terrain increases in difficulty. For flat
terrain training, the scene is a large n x n flat surface. Since
we did not use gait shaping reward functions such as Raibert
heuristic [|[13]] or periodic reward functions [10]], a purely flat
terrain will converge to any gait that can launch the robot in
the desired direction, such as pronking and cantering.

We introduce sparse obstacles to trip the robot should they
ever optimize to such gaits. For the blind policy, we make
the terrain extremely rough, with randomly sampled spikes in
the range of [4,20] centimeters. For the vision-based policy,
randomly rough terrain would counteract since the policy will
partially optimize to the visual data, which contains terrain
information 0.3 to 3 meters ahead of the robot. Therefore,
we implemented more predictable terrains such as horizontal
rails and waves. The benefits of implementing such terrains
are three-fold: (1) it trips the robots if they ever converge
to an unnatural gait, (2) it teaches the robot the desired feet
raise height, beyond which no improvement in rewards can be
achieved, and (3) it teaches the robot the desired orientation
in sloped terrains.

On rough terrains, the visual observation is generally sym-
metric in the y — axis, meaning if the robot sees stairs in the
positive y direction, it will likely see stairs in the negative y
direction, and similarly for other terrains. However, the visual
observation is not symmetric in the z—axis, with stairs in
the negative x direction and flatter terrains such as discrete
obstacles and rails in the positive x direction. This again leads
to asymmetric gaits, such as galloping on the left foot or
not using the left rear leg. To counter this phenomenon, we
made the environment symmetric in = direction by appending
flatter terrains to the negative side of stairs, thereby enforcing
a symmetric policy. The full description of the subterrains is
listed in Table [

TABLE II
SUB-TERRAIN CONFIGURATION FOR UNITREE GO1 ROUGH TERRAINS

Name Proportion  Value Range
HF Pyramid Slope (Left) 0.1 (0.0,0.4)
HF Pyramid Slope (Left) 0.1 (0.0,0.4)
Horizontal Rails (Left) 0.2 (0.04,0.07)
Random Rough (Left) 0.2 (0.02,0.06)
Pyramid Stairs (Left) 0.2 (0.05,0.18)
Pyramid Stairs 0.2 (0.05,0.18)
Pyramid Stairs Right) 0.2 (0.05,0.18)
Random Rough (Right) 0.2 (0.02,0.06)
Horizontal Rails (Right) 0.2 (0.04,0.07)
HF Pyramid Slope (Right) 0.1 (0.0,0.4)
HF Pyramid Slope (Inverted Right) 0.1 (0.0,0.4)
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Fig. 2. The terrain design and snapshots of the robot walking in each of the
three training environments. The blue arrows represent the trajectory of the
front-left foot, and the red arrows represent the trajectory of the front-right
foot. Dotted arrows are the projected trajectory, which is not yet covered at
the time of the snapshot.

4) Empirical Normalization: Finally, we remove any re-
maining possible asymmetry by normalizing the observation.
The observation x is normalized by:

T—H
o+e
Here € = 1072 is the noise injected to the standard deviation

o of the observations and g is the mean of the observations
currently in the rollout storage.

3)

Lnorm =

III. RESULTS
A. Summary

We evaluated our RL-based locomotion pipeline on flat and
rough terrains, both with and without the use of depth cameras,
to assess its performance in achieving stable, symmetric, and
robust walking patterns.

1) Flat terrain: The RL policy demonstrated stability and
symmetry during flat terrain tests. The robot maintained a
consistent body height and exhibited smooth walking pat-
terns characterized by low, natural strides. In both the blind
and vision-based training framework, the robot significantly
improved in coordinating footsteps, raising only one foot
at a time, and achieving a fully symmetric walking gait.
Additionally, the policy also converges to longer and flatter
trajectories.

2) Rough Terrain: On rough terrains, the robot effectively
navigated obstacles such as horizontal rails, random rough sur-
faces, and sloped terrains. By designing a symmetric training
environment and using empirical normalization, we alleviated
the asymmetry in the resulting gait and avoided convergence
to suboptimal policies such as walking with 3 legs or leaping
on one side of the robot.



B. Comparison with Baseline

Compared to the default configurations which are provided
in IsaacLab or previously implemented [6], [7], [12]], we
achieved:

o Fewer Failure Modes: The robot avoided unnatural gaits
(e.g., pronking or excessive leg lifting) often observed in
policies without terrain shaping.

o Improved Symmetry and Stability: Training with sym-
metric terrains reduced asymmetric gaits, enhancing lo-
comotion robustness across diverse terrains.

o Enhanced Adaptability: The vision-based policy
showed improved obstacle navigation compared to
baseline proprioception-only approaches.

IV. CONCLUSION

In this project, we addressed the dual challenges of achiev-
ing agility and elegance in quadruped robot locomotion
through an RL-based training pipeline that minimizes re-
liance on reward shaping. By leveraging terrain shaping, we
introduced sparse and intermittent environmental obstacles,
enabling the robot to learn natural walking patterns without
explicit reward engineering. This approach reduced the risk
of overfitting and fostered robust, generalizable policies. Our
experimental results demonstrated significant improvements
in gait symmetry, stability, and adaptability compared to
traditional RL methods. The combination of terrain shaping,
curricular training environments, and empirical normalization
allowed the robot to achieve smooth and elegant locomotion on
flat terrains while maintaining the versatility to navigate chal-
lenging environments with obstacles. This work underscores
the potential of terrain-based learning strategies for advancing
robotic locomotion. Future research could extend these meth-
ods by integrating multi-sensory inputs or addressing real-
world dynamics, further bridging the gap between simulation
and practical deployment.
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